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A revolution in robotics and artificial intelligence
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A
t the end of the twentieth century, computing 

was transformed from the preserve of 

laboratories and industry to a ubiquitous 

part of everyday life. We are now living 

through the early stages of a similarly rapid revolution 

in robotics and artificial intelligence — and the effect on 

society could be just as enormous.

This collection will be updated continuously 

online at https://go.nature.com/robotics-ai  with 

stories from journalists and research from across 

the Nature Portfolio journals. To keep track of the 

latest and greatest research in robotics and artificial 

intelligence from across the Nature Portfolio journals, 

as well as reports from journalists on topics of special 

interest, sign up to our free newsletter at 

 https://go.nature.com/robotics-signup
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I
nspiration can come from 
anywhere. For Radhika Nagpal, it 
came from her honeymoon.

Nagpal was snorkelling in the 
Bahamas when she was approached 
by a school of colourful striped 
fish, moving as one. “They come 
straight at you and check you out 
and then move off,” says Nagpal, now 
a mechanical engineer at Princeton 
University in New Jersey. “I was like, 
‘Wow, that is a collective behaviour 
that I’ve never seen.’”

Her mind returned to those 
curious fish years later, when she 
was pondering ways to build swarms 
of robots that could coordinate 
their behaviour in challenging 
environments. The result is a school 
of robotic fish — called Bluebots — 
that can coordinate their activity with 
their fellows1.

Nagpal’s school is small, only ten 
fish with limited abilities. The fish are 
equipped with blue LEDs so that their 
comrades can spot them underwater. 
Simple rules in their programming, 

such as swimming to the left when 
they see another Bluebot, enable 
them to synchronize their movement. 
But Nagpal hopes to eventually build 
larger collectives with more complex 
behaviours.

Such robotic schools could 
be tasked with locating and 
recording data on coral reefs to help 
researchers to study the reefs’ health 
over time. Just as living fish in a school 
might engage in different behaviours 
simultaneously — some mating, some 
caring for young, others finding food 
— but suddenly move as one when 
a predator approaches, robotic fish 
would have to perform individual 
tasks while communicating to each 
other when it’s time to do something 
different.

“The majority of what my lab 
really looks at is the coordination 
techniques — what kinds of 
algorithms have evolved in nature to 
make systems work well together?” 
she says.

Many roboticists are looking 

to biology for inspiration in robot 
design, particularly in the area of 
locomotion. Although big industrial 
robots in vehicle factories, for 
instance, remain anchored in place, 
other robots will be more useful if 
they can move through the world, 
performing different tasks and 
coordinating their behaviour.

Some robots can already move 
on wheels, but wheeled robots 
cannot climb stairs and are stymied 
by rough or shifting terrain, such 
as sand or gravel. By borrowing 
movement strategies from nature 
— walking, crawling, swimming, 
slithering, flying or leaping — robots 
could gain new functionality. They 
might perform search-and-rescue 
operations after an earthquake, or 
explore caves that are too small or 
unstable for people to venture into. 
They could carry out underwater 
inspections of ships and bridges. 
And unmanned aerial vehicles (UAVs) 
could fly more efficiently and better 
handle turbulence.

“The basic idea is looking 
to nature to see how things can 
potentially be done differently, how we 
can improve our automated systems,” 
says Michael Tolley, a mechanical 
engineer who heads the Bioinspired 
Robotics and Design Lab at the 
University of California, San Diego.

See Spot run
Perhaps the most obvious strategy 
for robotic motion is walking, and 
legged robots do exist. Spot, a low-
slung, four-legged machine that 
looks like a headless yellow dog, 
can climb uphill and navigate stairs. 
Its developer, Boston Dynamics in 
Waltham, Massachusetts, markets 
the US$74,500 device for mobile 
inspection of factories, construction 
sites and hazardous environments. 
A similar-looking robot, the Mini 
Cheetah, has been developed at the 
Massachusetts Institute of Technology 
(MIT) in Cambridge. “More than 90% 
of land animals are quadruped,” says 
Sangbae Kim, a mechanical engineer 
at MIT who helped to design the Mini 
Cheetah. “So a natural place to look 
at is the quadrupedal world. And the 
cheetah is a king of that world in terms 
of the speed.”

The Mini Cheetah can already 
perform backflips, and it runs as 

fast as 3.9 metres per second — 
about one-tenth as fast as an actual 
cheetah, but speedy for a robot. 
Now Kim is developing control 
software that he hopes will allow 
the robot to move smoothly across 
varying surfaces. This is challenging 
because the rules for how best to 
move a limb vary depending on the 
friction and hardness of the surface. 
Currently, moving from grass to 
concrete, or running up a gravelly 
hill, can cause the robot to stumble. 
“It runs really ugly and awkward,” 
Kim says. “It doesn’t fall, but it’s  
not efficient.”

Nevertheless, quadruped robots 
are one of the better options for 
negotiating difficult terrain, says 
J. Sean Humbert, a mechanical 
engineer who directs the Bio-Inspired 
Perception and Robotics Laboratory 
at the University of Colorado, 
Boulder. Last year, his group took part 
in the US Defense Advanced Research 
Projects Agency’s Subterranean 
Challenge, in which robots were 
tasked with navigating tunnels, caves 
and urban settings to find particular 
targets; the team took third place, 
winning $500,000. “The robots that 
ended up doing really well across 
the teams were the legged robots,” 
Humbert says. But faced with a sandy, 
uphill, rocky landscape, these robots 
struggled. “Even our Spot robot 
tipped over and slid around,” he says.

Feel the strain
One possible solution, Humbert says, 
is to endow robots with animals’ 
innate ability to sense and respond 
to mechanosensory information, 
such as pressure, strain or vibration. 

Bioinspired 
robots walk, 
swim, slither  
and fly
Engineers look to nature for ideas on how to 
make robots move through the world.
By Neil Savage
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▲ The Mini Cheetah, developed at the Massachusetts Institute of Technology, 

can run at speeds of up to 3.9 metres per second.

“The basic idea is 
looking to nature to 
see how things can 
potentially be done 
differently, how we 
can improve our 
automated systems.”
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He’s been taking that approach 
with flying machines by embedding 
strain sensors in the wings of fixed-
wing UAVs, as well as in the arms of 
quadrotor drones, which rely on 
spinning blades to fly and hover.

The work grew out of studies of 
honey bees. When Humbert placed 
bees in a wind tunnel and hit them 
with sudden gusts of air, their flight 
would be momentarily disturbed. 
After a quick change in the pattern 
of their wing beats, they would right 
themselves. Honey bees beat their 
wings 251 times per second, and the 
animals could make these corrections 
in just 15 to 20 beats — about 0.08 
seconds. “Our conclusion was that 
[that] had to be mechanosensory 
information,” Humbert says. “Vision 
is just not fast enough to correct the 
spins that we’re seeing.” If a drone 
could similarly sense a disturbance 
and automatically correct for it that 
rapidly, he says, it would be much less 
likely to crash or be knocked off course.

Fish also respond to 
mechanosensory stimuli, using a 
system of sensory organs known as 
the lateral line. The structure consists 
of hundreds of tiny sensors spread 
along the head, trunk and tail fin, and 
it enables fish to sense changes in the 
motion and pressure of water caused 
by obstacles, such as rocks and other 
animals. “Fish are sensing all of that 
and are using that, as well as vision, to 
position themselves relative to each 
other,” Nagpal says. No comparable 
underwater pressure sensor exists, 
but her team hopes to develop one to 
improve the Bluebots’ navigation.

In San Diego, Tolley is exploring 
robots built from polymers or other 
pliable materials that can more safely 

interact with humans or squeeze 
through tight spaces. Squishy, pliable 
robots could have more flexible 
motion than hard robots with only a 
few joints, but getting them to walk on 
soft legs is a challenge.

Tolley designed a robot with 
four soft legs, each divided into 
three chambers2. Pressurized air 
first enters one chamber, then 
moves to the next. This movement 
causes the legs to bend, then relax. 
By alternatively activating opposing 
pairs of legs, the robot trundles along 
like a turtle. And because it does not 
need electronic controls, its design 
could be useful even in the presence of 
electromagnetic interference.

Hard or soft, one issue robots 
struggle with is falling over. If a 
multimillion-dollar robot trips over a 
rock on Mars, an entire mission could 
be jeopardized. Some researchers 
are looking to insects for solutions, 
particularly click beetles, which can 
jump up to 20 times their body length 
without using their legs3.

Click beetles use a muscle to 
compress soft tissue, building up 
energy; a latch system holds the 
compressed tissue in place. When the 
animal releases the latch, producing 
its characteristic clicking sound, the 
tissue expands rapidly and the beetle 
is launched into the air, accelerating at 
about 530 times the force of gravity. 
(By comparison, a rider on a roller 
coaster typically experiences about 
four times the force of gravity.) If a 
robot could do that, it would have a 
mechanism for righting itself after 
tipping over, says Aimy Wissa, a 
mechanical and aerospace engineer 
who runs the Bio-inspired Adaptive 
Morphology Lab at Princeton.

Even more interesting, Wissa 
says, is that the beetle can perform 
this manoeuvre four or five times in 
rapid succession, without suffering 
any apparent damage. She’s trying to 
develop models that explain how the 
energy is rapidly dissipated without 
harming the insect, which could 
prove useful in applications involving 
rapid acceleration and deceleration, 
such as bulletproof vests. Other 
creatures also store and release 
energy to trigger rapid motion, 
including fruit-fly larvae and Venus 
flytraps (Dionaea muscipula), and 
understanding how they do so could 

lead to more-responsive artificial 
muscles, Tolley says.

Totally legless
In some places, such as narrow 
underground passages or on unstable 
surfaces, legs could require too much 
space or be too unstable to propel 
a robot. Howie Choset, a computer 
scientist at the Robotics Institute 
of Carnegie Mellon University in 
Pittsburgh, Pennsylvania, builds snake-
like robots with 16 joints that provide 
a range of motion that could drive 
everything from surgical instruments 
wending through the body to 
reconnaissance robots exploring 
archaeological sites.

In one early project, Choset took 
his robo-snakes to the Red Sea, where 
ancient Egyptians had dug caves to 
store boats that they’d built for trade 
with the Land of Punt, thought to 
be located in modern Somalia. The 
caves were no longer safe for human 
explorers, but snake robots seemed 
well suited to the task — until they 
didn’t. “The truth is, we got stuck,” 
Choset says. “We couldn’t go up and 
down the sandy inclines.”

To work out how a real snake 
would approach the problem, Choset 
looked to sidewinders, snakes that 
move by thrusting their bodies 
sideways in an S-shaped curve, gliding 
easily over sand4. Because sand is 
granular, it can behave as either a 
liquid or a solid, depending on how 
much force is applied. Choset found 
that sidewinders can exert the right 
amount of pushing force so that the 
sand remains solid underneath them 
and supports their bodies. “It wasn’t 
until we started looking at the real 
snakes, the sidewinders, and how they 
moved on sandy terrains that we were 
able to understand how to make our 
robot work on sandy terrains,” he says.

As for Wissa, she’s trying to build 
robots that can both swim and fly, 
using an animal that can do both 
as inspiration: flying fish5. These 
creatures use their pelvic fins to skim 
across the water’s surface and then 
launch into the air, where they can 
glide up to 400 metres.

Flying fish, Wissa explains, are 
“actually very good gliders”. But when 
they drop back to the water, they 
don’t submerge. “They actually just 
dip their caudal fin and they flap it 

vigorously, and then they can take off 
again,” Wissa says. “You can think of 
it as a taxiing manoeuvre.” She hopes 
to learn enough about this behaviour 
to develop a robot that can move 
through both air and water using the 
same propulsion mechanisms. “We’re 
very good as engineers in designing 
things for a single function,” Wissa 
says. “Where nature really can teach us 
a lot of lessons is this concept of multi-
functionality.”

For another type of multi-
functional locomotion, Wissa focuses 
on grasshoppers, which can jump and 
then open their wings to glide. She 
hopes to understand what makes them 
such good gliders. Many other insects 
rely on high-frequency flapping to 
fly. Perhaps, she says, it has to do with 
their wing shape.

Wissa also seeks inspiration from 
birds. She’s used aerodynamic testing 
and structural modelling to investigate 
covert feathers — small, stiff feathers 
that overlap other feathers on a bird’s 
wings and tail6. When a bird tries to 
land in windy conditions, the covert 
feathers on the wings deploy, either 
passively in response to air flow or 
actively under control of a tendon. The 
covert feathers alter the shape of the 
wing and give the bird finer control 
over its interaction with air flow, 
and don’t require as much energy as 
flapping the whole wing. By learning 
to understand the physics of these 
feathers, Wissa hopes to improve the 
flight of a UAV.

A two-way street
Biology has informed robotics, but the 

engineering involved can also provide 
insights into animal kinesiology. 
“We didn’t start by looking at 
biology,” Choset says. Instead, 
he mathematically modelled the 
fundamental principles of the motion 
he was interested in. “And in doing so, 
something kind of magical happened 
— we started coming up with ways to 
explain how biology works. So, is it 
robot-inspired biology or biologically 
inspired robots?”

Other engineers have had similar 
experiences. Nagpal is collaborating 
with ichthyologist George Lauder 
at Harvard University in Cambridge 
to model the hydrodynamics of 
schooling, to see whether the 
formation provides living fish with 
an energy benefit. And designs that 
make drones fly in a more energy-
efficient way might help to explain 
how birds and insects have evolved 
to do something similar. Wissa hopes 
her work, in addition to building 
flying, swimming robots, will lead to 
a greater understanding of flying fish. 
“We’re using this model to actually 
test hypotheses about nature, about 
why some species of flying fish have 
enlarged pelvic fins while others 
don’t,” Wissa says.

But despite the links between 
biology and engineering, don’t expect 
bio-inspired robots to ultimately look 
like the creatures that influenced 
them. Wissa says that, although many 
first attempts at mimicking biology 
resemble the original biological 
forms, scientists’ ultimate aim is to 
understand the principles behind 
how the systems operate, and then 
adapt those to different structures 
and materials. “We’re just copying the 
physics and the rules for how things 
work,” she says, “and then making 
engineering systems that serve the 
same function.” ■
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▲ This robot, inspired by sidewinding snakes, moves by twisting in an S-shaped curve.

Read this 

article 

online

Bioinspired 
robots walk, 
swim, slither  
and fly

© 2022 Springer Nature Ltd. All rights reserved.     |     doi: https://doi.org/10.1038/d41586-022-03014-xdoi: https://doi.org/10.1038/d41586-022-03014-x     |     © 2022 Springer Nature Ltd. All rights reserved.



6     |     Nature Outlook: Robotics and artificial intelligence  Nature Outlook: Robotics and artificial intelligence     |     7

B
ing Liu was road testing a self-
driving car, when suddenly 
something went wrong. The 
vehicle had been operating 

smoothly until it reached a T-junction 
and refused to move. Liu and the car’s 
other occupants were baffled. The road 
they were on was deserted, with no 
pedestrians or other cars in sight. “We 
looked around, we noticed nothing in 
the front, or in the back. I mean, there 

was nothing,” says Liu, a computer 
scientist at the University of Illinois 
Chicago.

Bing Liu was road testing a self-
driving car, when suddenly something 
went wrong. The vehicle had been 
operating smoothly until it reached 
a T-junction and refused to move. Liu 
and the car’s other occupants were 
baffled. The road they were on was 
deserted, with no pedestrians or other 

cars in sight. “We looked around, we 
noticed nothing in the front, or in 
the back. I mean, there was nothing,” 
says Liu, a computer scientist at the 
University of Illinois Chicago.

Stumped, the engineers took 
over control of the vehicle and drove 
back to the laboratory to review 
the trip. They worked out that the 
car had been stopped by a pebble 
in the road. It wasn’t something a 

person would even notice, but when 
it showed up on the car’s sensors it 
registered as an unknown object — 
something the artificial intelligence 
(AI) system driving the car had not 
encountered before.

The problem wasn’t with the AI 
algorithm as such — it performed 
as intended, stopping short of the 
unknown object to be on the safe side. 
The issue was that once the AI had 
finished its training, using simulations 
to develop a model that told it the 
differences between a clear road and an 
obstacle, it could learn nothing more. 
When it encountered something that 
had not been part of its training data, 
such as the pebble or even a dark spot 
on the road, the AI did not know how to 
react. People can build on what they’ve 
learnt and adapt as their environment 
changes; most AI systems are locked 
into what they already know.

In the real world, of course, 
unexpected situations inevitably arise. 
Therefore, Liu argues that any system 
aiming to perform learnt tasks outside 
a lab needs to be capable of on-the-job 
learning — supplementing the model 
it’s already developed with new data 
that it encounters. The car could, for 
instance, detect another car driving 
through a dark patch on the road with 
no problem, and decide to imitate 
it, learning in the process that a wet 
bit of road was not a problem. In the 
case of the pebble, it could use a voice 
interface to ask the car’s occupant what 
to do. If the rider said it was safe to 
continue, it could drive on, and it could 
then call on that answer for its next 
pebble encounter. “If the system can 
continually learn, this problem is easily 
solved,” Liu says.

Such continual learning, also 
known as lifelong learning, is the next 
step in the evolution of AI. Much AI 
relies on neural networks, which take 
data and pass them through a series 
of computational units, known as 
artificial neurons, which perform small 
mathematical functions on the data. 
Eventually the network develops a 
statistical model of the data that it can 
then match to new inputs. Researchers, 
who have based these neural networks 
on the operation of the human 
brain, are looking to humans again 
for inspiration on how to make AI 
systems that can keep learning as they 
encounter new information. Some 

groups are trying to make computer 
neurons more complex so they’re 
more like neurons in living organisms. 
Others are imitating the growth of 
new neurons in humans so machines 
can react to fresh experiences. And 
some are simulating dream states to 
overcome a problem of forgetfulness. 
Lifelong learning is necessary not 
only for self-driving cars, but for any 
intelligent system that has to deal with 
surprises, such as chatbots, which are 
expected to answer questions about a 
product or service, and robots that can 
roam freely and interact with humans. 
“Pretty much any instance where you 
deploy AI in the future, you would see 
the need for lifelong learning,” says 
Dhireesha Kudithipudi, a computer 
scientist who directs the MATRIX AI 

Consortium for Human Well-Being at 
the University of Texas at San Antonio.

Continual learning will be 
necessary if AI is to truly live up to 
its name. “AI, to date, is really not 
intelligent,” says Hava Siegelmann, a 
computer scientist at the University of 
Massachusetts Amherst who created 
the Lifelong Learning Machines 
research-funding initiative for the US 
Defense Advanced Research Projects 
Agency. “If it’s a neural network, you 
train it in advance, you give it a data 
set and that’s all. It does not have the 
ability to improve with time.”

Model making
In the past decade, computers 
have become adept at tasks such as 
classifying cats or tumours in images, 
identifying sentiment in written 
language, and winning at chess. 
Researchers might, for instance, feed 
the computer photos that have been 

labelled by humans as containing cats. 
The computer receives the photos, 
which it interprets as numerical 
descriptions of pixels with various 
colour and brightness values, and 
runs them through layers of artificial 
neurons. Each neuron has a randomly 
chosen weight, a value by which 
it multiplies the value of the input 
data. The computer runs the input 
data through the layers of neurons 
and checks the output data against 
validation data to see how accurate 
the results are. It then repeats the 
process, altering the weights in each 
iteration until the output reaches a 
high accuracy. The process produces a 
statistical model of the values and the 
placement of pixels that define a cat. 
The network can then analyse a new 
photo and decide whether it matches 
the model — that is, whether there’s a cat 
in the picture. But that cat model, once 
developed, is pretty much set in stone.

One way to get the computer to 
learn to identify many objects would 
be to develop lots of models. You could 
train one neural network to recognize 
cats and another to recognize dogs. 
That would require two data sets, one 
for each animal, and would double the 
time and computing power needed to 
develop each model. But suppose you 
wanted the computer to distinguish 
between pictures of cats and dogs. You 
would have to train a third network, 
either using all the original data or 
comparing the two existing models. 
Add other animals into the mix and yet 
more models must be developed.

Training and storing more models 
requires greater resources, and this can 
quickly become a problem. Training a 
neural network can take reams of data 
and weeks of time. For instance, an AI 
system called GPT-3, which learnt to 
produce text that sounds as if it was 
written by a human, required almost 
15 days of training on 10,000 high-end 
computer processors1. The ImageNet 
data set, which is often used to train 
neural networks in object recognition, 
contains more than 14 million images. 
Depending on the subset of the total 
number of images that is used, it can 
take from a few minutes to more than 
a day and a half to download. Any 
machine that has to spend days re-
learning a task each time it encounters 
new information will essentially grind 
to a halt.

Learning over a lifetime
Artificial-intelligence researchers turn to lifelong learning in the hopes of 
making machine intelligence more adaptable. By Neil Savage
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▲ The Mini Cheetah, developed at the Massachusetts Institute of Technology, can run at speeds of up to 3.9 metres per second.

“AI, to date, is really 
not intelligent. If it’s a 
neural network, you 
train it in advance, 
you give it a data set 
and that’s all. It does 
not have the ability to 
improve with time.”
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One system that could make 
the generation of multiple models 
more efficient is Self-Net2, created by 
Rolando Estrada, a computer scientist 
at Georgia State University in Atlanta, 
and his students Jaya Mandivarapu 
and Blake Camp. Self-Net compresses 
the models, to prevent a system with 
a lot of different animal models from 
growing too unwieldy.

The system uses an autoencoder, 
a separate neural network that 
learns which parameters — such as 
clusters of pixels in the case of image-
recognition tasks — the original neural 
network focused on when building 
its model. One layer of neurons in the 
middle of the autoencoder forces the 
machine to pick a tiny subset of the 
most important weights of the model. 
There might be 10,000 numerical 
values going into the model and 
another 10,000 coming out, but in the 
middle layer the autoencoder reduces 
that to just 10 numbers. So the system 
has to find the ten weights that will 
allow it to get the most accurate 
output, Estrada says. 

The process is similar to 
compressing a large TIFF image file 
down to a smaller JPEG, he says; there’s 
a small loss of fidelity, but what is left 
is good enough. The system tosses out 
most of the original input data, and 
then saves the ten best weights. It can 
then use those to perform the same 
cat-identification task with almost the 
same accuracy, without having to store 
enormous amounts of data. 

To streamline the creation of 
models, computer scientists often use 
pre-training. Models that are trained 
to perform similar tasks have to learn 
similar parameters, at least in the early 
stages. Any neural network learning 
to recognize objects in images, for 
instance, first needs to learn to identify 
diagonal and vertical lines. There’s no 
need to start from scratch each time, 
so newer models can be pre-trained 
with the weights that already recognize 
those basic features. To make models 
that can recognize cows or pigs or 
kangaroos, Estrada can pre-train other 
neural networks with the parameters 
from his autoencoder. Because all 
animals share some of the same facial 
features, even if the details of size or 
shape are different, such pre-training 
allows new models to be generated 
more efficiently.

The system is not a perfect way 
to get networks to learn on the job, 
Estrada says. A human still has to tell 
the machine when to switch tasks; for 
example, when to start looking for 
horses instead of cows. That requires 
a human to stay in the loop, and it 
might not always be obvious to a 
person that it’s time for the machine 
to do something different. But Estrada 
hopes to find a way to automate task 
switching so the computer can learn 
to identify characteristics of the input 
data and use that to decide which 
model it should use, so it can keep 
operating without interruption. 

Out with the old
It might seem that the obvious 
course is not to make multiple 
models but rather to grow a network. 
Instead of developing two networks 
for recognizing cats and horses 
respectively, for instance, it might 
appear easier to teach the cat-savvy 
network to also recognize horses. This 
approach, however, forces AI designers 
to confront one of the main issues 
in lifelong learning, a phenomenon 
known as catastrophic forgetting. 
A network trained to recognize cats 
will develop a set of weights across 
its artificial neurons that are specific 
to that task. If it is then asked to 
start identifying horses, it will start 
readjusting the weights to make it 
more accurate for horses. The model 
will no longer contain the right weights 

for cats, causing it to essentially forget 
what a cat looks like. “The memory is in 
the weights. When you train it with new 
information, you write on the same 
weights,” says Siegelmann. “You can 
have a billion examples of a car driving, 
and now you teach it 200 examples 
related to some accident that you don’t 
want to happen, and it may know these 
200 cases and forget the billion.”

One method of overcoming 
catastrophic forgetting uses replay — 
that is, taking data from a previously 
learnt task and interweaving 
them with new training data. This 
approach, however, runs head-on 

into the resource problem. “Replay 
mechanisms are very memory hungry 
and computationally hungry, so we do 
not have models that can solve these 
problems in a resource-efficient way,” 
Kudithipudi says. There might also 
be reasons not to store data, such as 
concerns about privacy or security, 
or because they belong to someone 
unwilling to share them indefinitely.

Siegelmann says replay is roughly 
analogous to what the human 
brain does when it dreams. Many 
neuroscientists think that the brain 
consolidates memories and learns 
things by replaying experiences 
during sleep. Similarly, replay in neural 
networks can reinforce weights that 
might otherwise be overwritten. 
But the brain doesn’t actually review 
a moment-by-moment rerun of 

its experiences, Siegelmann says. 
Rather, it reduces those experiences 
to a handful of characteristic features 
and patterns — a process known as 
abstraction — and replays just those 
parts. Her brain-inspired replay tries 
to do something similar; instead of 
reviewing mountains of stored data, 
it selects certain facets of what it 
has learnt to replay. Each layer in a 
neural network, Siegelmann says, 
moves the learning to a higher level 
of abstraction, from the specific 
input data in the bottom layer to 
mathematical relationships in the data 
at higher layers. In this way, the system 
sorts specific examples of objects into 
classes. She lets the network select the 
most important of the abstractions 
in the top couple of layers and replay 
those. This technique keeps the learnt 
weights reasonably stable — although 
not perfectly so — without having to 
store any previously used data at all. 

Because such brain-inspired 
replay focuses on the most salient 
points that the network has learnt, 
the network can find associations 
between new and old data more easily. 
The method also helps the network 
to distinguish between pieces of 
data that it might not have separated 
easily before — finding the differences 
between a pair of identical twins, 
for example. If you’re down to only 
a handful of parameters in each set, 
instead of millions, it’s easier to spot 
the similarities. “Now, when we replay 
one with the other, we start looking at 
the differences,” Siegelmann says. “It 
forces you to find the separation, the 
contrast, the associations.”

Focusing on high-level 
abstractions rather than specifics is 
useful for continual learning because 
it allows the computer to make 
comparisons and draw analogies 
between different scenarios. For 
example, if your self-driving car has 
to work out how to handle driving 
on ice in Massachusetts, Siegelmann 
says, it might use data that it has about 
driving on ice in Michigan. Those 
examples won’t exactly match the 
new conditions, because they’re from 
different roads. But the car also has 
knowledge about driving on snow in 
Massachusetts, where it is familiar with 
the roads. So if the car can identify 
only the most important differences 
and similarities between snow and 

ice, Massachusetts and Michigan, 
instead of getting bogged down in 
minor details, it might come up with a 
solution to the specific, new situation 
of driving on ice in Massachusetts. 

A modular approach
Looking at how the brain handles 
these issues can inspire ideas, even if 
they don’t replicate what’s going on 
biologically. To deal with the need for 
a neural network that can learn tasks 
without overwriting the old, scientists 
take a cue from neurogenesis — the 
process by which neurons are formed 
in the brain. A machine can’t grow parts 
the way a body can, but computer 
scientists can replicate new neurons 
in software by generating connections 
in parts of the system. Although the 
mature neurons have learnt to react to 
only certain data inputs, these ‘baby 
neurons’ can respond to all the input. 
“They can react to new samples that are 
fed into the model,” Kudithipudi says. 
In other words, they can learn from new 
information while the already-trained 
neurons retain what they’ve learnt.

Adding more neurons is just one 
way to enable a system to learn new 
things. Estrada has come up with 
another approach, on the basis of 
the fact that a neural network is only 
a loose approximation of a human 
brain. “We call the nodes in a neural 
network ‘neurons’. But if you see what 
they’re actually doing, they’re basically 
computing a weighted sum. It’s an 
incredibly simplified view of real, 
biological neurons, which perform 
all sorts of complex nonlinear signal 
processing.”  

In an effort to mimic some of the 
complicated behaviours of real neurons 
more successfully, Estrada and his 
students developed what he calls deep 
artificial neurons (DANs)3. A DAN is a 
small neural network that is treated as a 
single neuron in a larger neural network.  

DANs can be trained for one 
particular task — for instance, Estrada 
might develop one for identifying 
handwritten numbers. The model in the 
DAN is then fixed, so it can’t be changed 
and will always provide the same 
output to other neurons in the still-
trainable network layers surrounding 
it. That larger network can go on to 
learn a related task, such as identifying 
numbers written by someone else — but 
the original model is not forgotten. 

“You end up with this general-purpose 
module that you can reuse for similar 
tasks in the future,” Estrada says. “These 
modules allow the system to learn to 
perform the new tasks in a similar way 
to the old tasks, so that the features are 
more compatible with each other over 
time. So that means that the features 
are more stable and it forgets less.”

So far, Estrada and his colleagues 
have shown that this technique 
works on fairly simple tasks, such 
as number recognition. But they’re 
trying to adapt it to more challenging 
problems, including learning how 
to play old video games such as 
Space Invaders. “And then, if that’s 
successful, we could use it for more 
sophisticated things,” says Estrada. 
It might, for instance, prove useful 
in autonomous drones, which are 
sent out with basic programming 
but have to adapt to new data in the 
environment, and will have to do any 
on-the-fly learning within tight power 
and processing constraints.

There’s a long way to go before AI 
can function as people do, dealing with 
an endless variety of ever-changing 
scenarios. But if computer scientists 
can develop the techniques to allow 
machines to make the continual 
adaptations that living creatures are 
capable of, it could go a long way 
towards making AI systems more 
versatile, more accurate and more 
recognizably intelligent  ■
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▲ Computer scientist Dhireesha Kudithipudi (right) and her student Nicholas Soures 

discuss factors that affect continual learning.
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specialist at the Massachusetts 
Institute of Technology (MIT) in 
Cambridge. Only with tactile feedback 
can a robot adjust its grip to handle 
objects of different sizes, shapes and 
textures. With touch, robots can help 
people with limited mobility, pick 
up soft objects such as fruit, handle 
hazardous materials and even assist 
in surgery. Tactile sensing also has the 
potential to improve prosthetics, help 
people to literally stay in touch from 
afar, and even has a part to play in 
fulfilling the fantasy of the all-purpose 
household robot that will take care 
of the laundry and dishes. “If we want 
robots in our home to help us out, 
then we’d want them to be able to 
use their hands,” Adelson says. “And 
if you’re using your hands, you really 
need a sense of touch.” 

With this goal in mind, and 
buoyed by advances in machine 
learning, researchers around the 
world are developing myriad tactile 
sensors, from finger-shaped devices 
to electronic skins. The idea isn’t new, 
says Veronica Santos, a roboticist 
at the University of California, Los 
Angeles. But advances in hardware, 
computational power and algorithmic 
knowhow have energized the field. 
“There is a new sense of excitement 
about tactile sensing and how to 
integrate it with robots,” Santos says.

Feel by sight
One of the most promising sensors 
relies on well-established technology: 
cameras. Today’s cameras are 
inexpensive yet powerful, and 
combined with sophisticated 
computer vision algorithms, they’ve 
led to a variety of tactile sensors. 
Different designs use slightly different 
techniques, but they all interpret touch 
by visually capturing how a material 
deforms on contact.

ADA uses a popular camera-
based sensor called GelSight, the first 
prototype of which was designed by 
Adelson and his team more than a 
decade ago2. A light and a camera sit 
behind a piece of soft rubbery material, 
which deforms when something 
presses against it. The camera then 
captures the deformation with super-
human sensitivity, discerning bumps as 
small as one micrometre. GelSight can 
also estimate forces, including shear 
forces, by tracking the motion of a 

pattern of dots printed on the rubbery 
material as it deforms2.

GelSight is not the first or the only 
camera-based sensor (ADA was tested 
with another one, called FingerVision). 
However, its relatively simple and 
easy-to-manufacture design has so far 
set it apart, says Roberto Calandra, a 
research scientist at Meta AI (formerly 
Facebook AI) in Menlo Park, California, 
who has collaborated with Adelson. In 
2011, Adelson co-founded a company, 
also called GelSight, based on the 
technology he had developed. The 
firm, which is based in Waltham, 
Massachusetts, has focused its efforts 
on industries such as aerospace, using 
the sensor technology to inspect for 
cracks and defects on surfaces. 

One of the latest camera-based 
sensors is called Insight, documented 
this year by Huanbo Sun, Katherine 
Kuchenbecker and Georg Martius at 
the Max Planck Institute for Intelligent 
Systems in Stuttgart, Germany3. The 
finger-like device consists of a soft, 
opaque, tent-like dome held up with 
thin struts, hiding a camera inside. 

It’s not as sensitive as GelSight, but 
it offers other advantages. GelSight is 
limited to sensing contact on a small, 
flat patch, whereas Insight detects 
touch all around its finger in 3D, 
Kuchenbecker says. Insight’s silicone 
surface is also easier to fabricate, and 
it determines forces more precisely. 
Kuchenbecker says that Insight’s 
bumpy interior surface makes forces 
easier to see, and unlike GelSight’s 
method of first determining the 
geometry of the deformed rubber 
surface and then calculating the forces 
involved, Insight determines forces 
directly from how light hits its camera. 
Kuchenbecker thinks this makes Insight 
a better option for a robot that needs 
to grab and manipulate objects; Insight 
was designed to form the tips of a three-
digit robot gripper called TriFinger.

Skin solutions
Camera-based sensors are not perfect. 
For example, they cannot sense 
invisible forces, such as the magnitude 
of tension of a taut rope or wire. A 
camera’s frame-rate might also not 
be quick enough to capture fleeting 
sensations, such as a slipping grip, 
Santos says. And squeezing a relatively 
bulky camera-based sensor into a 
robot finger or hand, which might 
already be crowded with other sensors 
or actuators (the components that 
allow the hand to move) can also pose 
a challenge.

This is one reason other 
researchers are designing flat and 
flexible devices that can wrap around 
a robot appendage. Zhenan Bao, 
a chemical engineer at Stanford 
University in California, is designing 
skins that incorporate flexible 
electronics and replicate the body’s 
ability to sense touch. In 2018, for 
example, her group created a skin that 
detects the direction of shear forces 
by mimicking the bumpy structure of 
a below-surface layer of human skin 
called the spinosum4. 

When a gentle touch presses the 
outer layer of human skin against the 
dome-like bumps of the spinosum, 
receptors in the bumps feel the 
pressure. A firmer touch activates 
deeper-lying receptors found below 
the bumps, distinguishing a hard touch 
from a soft one. And a sideways force is 
felt as pressure pushing on the side of 
the bumps.

Bao’s electronic skin similarly 
features a bumpy structure that 
senses the intensity and direction of 
forces. Each one-millimetre bump is 
covered with 25 capacitors, which store 
electrical energy and act as individual 
sensors. When the layers are pressed 
together, the amount of stored energy 
changes. Because the sensors are so 
small, Bao says, a patch of electronic 
skin can pack in a lot of them, enabling 
the skin to sense forces accurately and 
aiding a robot to perform complex 
manipulations of an object.

To test the skin, the researchers 
attached a patch to the fingertip of a 
rubber glove worn by a robot hand. The 
hand could pat the top of a raspberry 
and pick up a ping-pong ball without 
crushing either. 

Although other electronic skins 
might not be as sensor-dense, they 

F
ork in hand, a robot arm 
skewers a strawberry from 
above and delivers it to Tyler 
Schrenk’s mouth. Sitting in his 

wheelchair, Schrenk nudges his neck 
forward to take a bite. Next, the arm 
goes for a slice of banana, then a carrot. 
Each motion it performs by itself, on 
Schrenk’s spoken command.

For Schrenk, who became 
paralysed from the neck down after a 
diving accident in 2012, such a device 
would make a huge difference in his 
daily life if it were in his home. “Getting 
used to someone else feeding me 
was one of the strangest things I had 
to transition to,” he says. “It would 

definitely help with my well-being and 
my mental health.”

His home is already fitted with 
voice-activated power switches and 
door openers, enabling him to be 
independent for about 10 hours a day 
without a caregiver. “I’ve been able to 
figure most of this out,” he says. “But 
feeding on my own is not something I 
can do.” Which is why he wanted to test 
the feeding robot, dubbed ADA (short 
for assistive dexterous arm). Cameras 
located above the fork enable ADA to 
see what to pick up. But knowing how 
forcefully to stick a fork into a soft 
banana or a crunchy carrot, and how 
tightly to grip the utensil, requires a 

sense that humans take for granted: 
“Touch is key,” says Tapomayukh 
Bhattacharjee, a roboticist at Cornell 
University in Ithaca, New York, who 
led the design of ADA while at the 
University of Washington in Seattle. 
The robot’s two fingers are equipped 
with sensors that measure the sideways 
(or shear) force when holding the fork1. 
The system is just one example of a 
growing effort to endow robots with a 
sense of touch. 

“The really important things 
involve manipulation, involve the 
robot reaching out and changing 
something about the world,” says 
Ted Adelson, a computer-vision 
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“There is a new sense 
of excitement about 
tactile sensing and 
how to integrate it 
with robots,”
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Teaching robots to touch
Robots have become increasingly adept at interacting with the world 
around them. But to fulfil their potential, they also need a sense of touch. 
By Marcus Woo

▼ DIGIT is a camera-based fingertip-like sensor manufactured by companies GelSight and Meta AI.
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capability into a simple, flexible, 
artificial nerve system that could 
identify Braille characters10. When 
attached to a cockroach’s leg, the 
device could stimulate the insect’s 
nerves — demonstrating the potential 
for a prosthetic device that could 
integrate with a living creature’s 
nervous system.

Ultimately, to make sense of 
sensor data, a robot must rely on 
machine learning. Conventionally, 
processing a sensor’s raw data was 
tedious and difficult, Calandra 

says. To understand the raw data 
and convert them into physically 
meaningful numbers such as 
force, roboticists had to calibrate 
and characterize the sensor. With 
machine learning, roboticists can 
skip these laborious steps. The 
algorithms enable a computer to sift 
through a huge amount of raw data 
and identify meaningful patterns by 
itself. These patterns — which can 
represent a sufficiently tight grip 
or a rough texture — can be learnt 
from training data or from computer 
simulations of its intended task, and 
then applied in real-life scenarios.

“We’ve really just begun to 
explore artificial intelligence for 
touch sensing,” Calandra says. “We 
are nowhere near the maturity of 
other fields like computer vision 
or natural language processing.” 
Computer-vision data are based 
on a two-dimensional array of 
pixels, an approach that computer 
scientists have exploited to develop 
better algorithms, he says. But 

researchers still don’t fully know 
what a comparable structure might 
be for tactile data. Understanding 
the structure for those data, and 
learning how to take advantage of 
them to create better algorithms, 
will be one of the biggest challenges 
of the next decade. 

Barrier removal
The boom in machine learning and the 
variety of emerging hardware bodes 
well for the future of tactile sensing. 
But the plethora of technologies is 
also a challenge, researchers say. 
Because so many labs have their own 
prototype hardware, software and 
even data formats, scientists have a 
difficult time comparing devices and 
building on one another’s work. And if 
roboticists want to incorporate touch 
sensing into their work for the first 
time, they would have to build their 
own sensors from scratch — an often 
expensive task, and not necessarily in 
their area of expertise. 

This is why, last November, 
GelSight and Meta AI announced 
a partnership to manufacture a 
camera-based fingertip-like sensor 
called DIGIT. With a listed price of 
$300, the device is designed to be a 
standard, relatively cheap, off-the-
shelf sensor that can be used in any 
robot. “It definitely helps the robotics 
community, because the community 
has been hindered by the high cost of 
hardware,” Santos says. 

Depending on the task, 
however, you don’t always need 
such advanced hardware. In a paper 
published in 2019, a group at MIT 
led by Subramanian Sundaram built 
sensors by sandwiching a few layers 
of material together, which change 
electrical resistance when under 
pressure11. These sensors were then 
incorporated into gloves, at a total 
material cost of just $10. When aided 
by machine learning, even a tool as 
simple as this can help roboticists to 
better understand the nuances of grip, 
Sundaram says.

Not every roboticist is a 
machine-learning specialist, 
either. To aid with this, Meta AI has 
released open source software for 
researchers to use. “My hope is 
by open-sourcing this ecosystem, 
we’re lowering the entry bar for new 
researchers who want to approach 

the problem,” Calandra says. “This is 
really the beginning.”

Although grip and dexterity 
continue to be a focus of robotics, 
that’s not all tactile sensing is useful 
for. A soft, slithering robot, might 
need to feel its way around to navigate 
rubble as part of search and rescue 
operations, for instance. Or a robot 
might simply need to feel a pat on the 
back: Kuchenbecker and her student 
Alexis Block have built a robot with 
torque sensors in its arms and a 
pressure sensor and microphone 
inside a soft, inflatable body that can 
give a comfortable and pleasant hug, 
and then release when you let go. That 
kind of human-like touch is essential 
to many robots that will interact 
with people, including prosthetics, 
domestic helpers and remote avatars. 
These are the areas in which tactile 
sensing might be most important, 
Santos says. “It’s really going to be the 
human–robot interaction that’s going 
to drive it.” 

So far, robotic touch is confined 
mainly to research labs. “There’s a 
need for it, but the market isn’t quite 
there,” Santos says. But some of 
those who have been given a taste of 
what might be achievable are already 
impressed. Schrenk’s tests of ADA, the 
feeding robot, provided a tantalizing 
glimpse of independence. “It was just 
really cool,” he says. “It was a look into 
the future for what might be possible 
for me.”  ■
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tend to be easier to fabricate. In 2020, 
Benjamin Tee, a former student of Bao 
who now leads his own laboratory at 
the National University of Singapore, 
developed a sponge-like polymer that 
can sense shear forces5. Moreover, 
similar to human skin, it is self-healing: 
after being torn or cut, it fuses back 
together when heated and stays 
stretchy, which is useful for dealing 
with wear and tear.

The material, dubbed AiFoam, is 
embedded with flexible copper wire 
electrodes, roughly emulating how 
nerves are distributed in human skin. 
When touched, the foam deforms 
and the electrodes squeeze together, 
which changes the electrical current 
travelling through it. This allows both 
the strength and direction of forces 
to be measured. AiFoam can even 
sense a person’s presence just before 
they make contact — when their finger 
comes within a few centimetres, it 
lowers the electric field between the 
foam’s electrodes. 

Last November, researchers 
at Meta AI and Carnegie Mellon 
University in Pittsburgh, Pennsylvania, 
announced a touch-sensitive skin 
comprising a rubbery material 
embedded with magnetic particles6. 
Dubbed ReSkin, when it deforms the 
particles move along with it, changing 
the magnetic field. It is designed to 
be easily replaced — it can be peeled 
off and a fresh skin installed without 
requiring complex recalibration — and 
100 sensors can be produced for less 
than US$6.

Rather than being universal 
tools, different skins and sensors will 
probably lend themselves to particular 
purposes. Bhattacharjee and his 
colleagues, for example, have created a 

stretchable sleeve that fits over a robot 
arm and is useful for sensing incidental 
contact between a robotic arm and its 
environment7. The sheet is made from 
layered fabric that detects changes in 
electrical resistance when pressure 
is applied to it. It can’t detect shear 
forces, but it can cover a broad area 
and wrap around a robot’s joints.

Bhattacharjee is using the 
sleeve to identify not just when a 
robotic arm comes into contact with 
something as it moves through a 
cluttered environment, but also what 
it bumps up against. If a helper robot 
in a home brushed against a curtain 
while reaching for an object, it might 
be fine for it to continue, but contact 
with a fragile wine glass would require 
evasive action.

Other approaches use air to 
provide a sense of touch. Some robots 
use suction grippers to pick up and 
move objects in warehouses or in 
the oceans. In these cases, Hannah 
Stuart, a mechanical engineer at the 
University of California, Berkeley, is 
hoping that measuring suction airflow 
can provide tactile feedback to a robot. 
Her group has shown that the rate of 
airflow can determine the strength of 
the suction gripper’s hold and even the 
roughness of the surface it is suckered 
on to8. And underwater, it can reveal 
how an object moves while being held 
by a suction-aided robot hand9. 

Processing feelings
Today’s tactile technologies are 
diverse, Kuchenbecker says. “There are 
multiple feasible options, and people 
can build on the work of others,” she 
says. But designing and building 
sensors is only the start. Researchers 
then have to integrate them into a 
robot, which must then work out 
how to use a sensor’s information to 
execute a task. “That’s actually going to 
be the hardest part,” Adelson says.

For electronic skins that contain a 
multitude of sensors, processing and 
analysing data from them all would be 
computationally and energy intensive. 
To handle so many data, researchers 
such as Bao are taking inspiration from 
the human nervous system, which 
processes a constant flood of signals 
with ease. Computer scientists have 
been trying to mimic the nervous 
system with neuromorphic computers 
for more than 30 years. But Bao’s 

goal is to combine a neuromorphic 
approach with a flexible skin that could 
integrate with the body seamlessly — 
for example, on a bionic arm.  

Unlike in other tactile sensors, 
Bao’s skins deliver sensory signals 
as electrical pulses, such as those 
in biological nerves. Information 
is stored not in the intensity of the 
pulses, which can wane as a signal 
travels, but instead in their frequency. 
As a result, the signal won’t lose much 
information as the range increases, 
she explains.

Pulses from multiple sensors 
would meet at devices called synaptic 
transistors, which combine the signals 
into a pattern of pulses — similar to 
what happens when nerves meet at 
synaptic junctions. Then, instead of 
processing signals from every sensor, 
a machine-learning algorithm needs 
only to analyse the signals from several 
synaptic junctions, learning whether 
those patterns correspond to, say, the 
fuzz of a sweater or the grip of a ball.

In 2018, Bao’s lab built this 

▲ Alexis Block, a postdoc at the 

University of California, Los Angeles, 

experiences a hug from a HuggieBot, a 

robot she helped to create that can feel 

when someone pats or squeezes it.

 “My hope is by 
open-sourcing 
this ecosystem, 
we’re lowering the 
entry bar for new 
researchers who 
want to approach 
the problem. This is 
really the beginning.”

A
L

E
X

IS
 E

. 
B

L
O

C
K

© 2022 Springer Nature Ltd. All rights reserved.     |     doi: https://doi.org/10.1038/d41586-022-01401-ydoi: https://doi.org/10.1038/d41586-022-01401-y     |     © 2022 Springer Nature Ltd. All rights reserved.

Read this 

article 

online

Teaching 
robots to 
touch



14     |     Nature Outlook: Robotics and artificial intelligence  Nature Outlook: Robotics and artificial intelligence     |     15

verifiable — and if the people building 
the models see it as a worthwhile 
endeavour.

A neuron by any other name
The deep neural networks that 
DeGrave and Janizek investigated have 
become popular for their uncanny 
ability to learn about what’s in a 
photograph, the meaning of spoken 
language and much more, just through 
exposure. These networks work in a 
similar way to the human brain. Just 
as certain living nerve cells fire in a 
pattern in response to external stimuli 
— the sight of a cat, for instance, 
will trigger a different pattern from 
the sight of a tree — the artificial 
neurons in a neural network produce a 
characteristic response on the basis of 
the input they receive.

The neurons in this case are 
mathematical functions. Input data 
comes into the system in numerical 
form, describing, for instance, the 
colour of a pixel in a photograph. The 
neurons then perform a calculation on 
that data. In the human body, neurons 
fire off a signal only if the stimulus 
they receive surpasses a certain 
electrical threshold. Similarly, each 
mathematical neuron in an artificial 
neural network is weighted with a 
threshold value. If the result of the 
calculation surpasses that threshold, 
it is passed to another layer of neurons 
for further calculations. Eventually, 
the system learns statistical patterns 
about how the data coming out relates 
to the data going in. Images that have 
been labelled as having a cat in them 
will have systematic differences from 

those labelled as not having a cat, and 
these telltale signs can then be looked 
for in other images to ascertain the 
probability of a cat being present.

There are variations in the 
design of neural networks, as well as 
other machine-learning techniques. 
The more layers of calculation a 
model applies to an input, the more 
challenging it becomes to explain 
what it is doing. Simple models such 
as small decision trees — which weigh 
up a handful of competing choices 
that lead to different answers — are 
not really black boxes, says Kate 
Saenko, a computer scientist at 
Boston University in Massachusetts. 
Small decision trees are “basically a 
set of rules where a human can easily 
understand what that model is doing, 
so it’s inherently interpretable”, she 

I
n February 2020, with COVID-19 
spreading rapidly around the 
globe and antigen tests hard 
to come by, some physicians 

turned to artificial intelligence (AI) 
to try to diagnose cases1. Some 
researchers tasked deep neural 
networks — complex systems that are 
adept at finding subtle patterns in 
images — with looking at X-rays and 
chest computed tomography (CT) 
scans to quickly distinguish between 
people with COVID-based pneumonia 
and those without2. “Early in the 
COVID-19 pandemic, there was a race 
to build tools, especially AI tools, 
to help out,” says Alex DeGrave, a 
computer engineer at the University of 
Washington in Seattle. But in that rush, 
researchers did not notice that many 
of the AI models had decided to take a 
few shortcuts.

The AI systems honed their skills 
by analysing X-rays that had been 
labelled as either COVID-positive 
or COVID-negative. They would 
then use the differences they had 
spotted between the images to make 
inferences about new, unlabelled 
X-rays. But there was a problem. 
“There wasn’t a lot of data available at 
the time,” says DeGrave.

Radiographs of people with 
COVID-19 were being released by a 
number of hospitals, he explains. 
Scans of people without COVID-19, 

meanwhile, came mainly from a 
repository of lung images held by the 
US National Institutes of Health, put 
together before the pandemic. As a 
result, the data sets had characteristic 
differences that had nothing to do 
with whether a person had the disease. 
For instance, many X-rays use the 
letter R to label a person’s right side, 
so a radiologist looking at the image 
can orient it properly. However, the 
appearance of these markers differs 
from one hospital to another. With 
most of the COVID-negative images 
coming from a single source, some 
of the AI systems trained in this way 
based their diagnoses not just on the 
biology on display, but on the style and 
placement of the letter R on the X-ray.

DeGrave and Joseph Janizek, 
both members of computer scientist 
Su-In Lee’s Lab of Explainable AI for 
Biological and Medical Sciences in 
Seattle, published a paper3 in Nature 
Machine Intelligence in May 2021 
reporting the problem. The decision-
making process of a machine-learning 
model is often referred to as a black 
box — researchers and users typically 
know the inputs and outputs, but it is 
hard to see what’s going on inside. But 
DeGrave and Janizek were able to prise 
open these boxes, using techniques 
designed to test AI systems and 
explain why they do what they do.

There are many advantages to 

building explainable AI, sometimes 
known as XAI. In a medical setting, 
understanding why a system made a 
certain diagnosis can help to convince 
a pathologist that it is legitimate. 
In some cases, explanations are 
required by law: when a system 
makes a decision on loan eligibility, 
for example, both the United States 
and the European Union require 
evidence that if credit is denied it is 
not for reasons barred by law, such 
as race or sex. Insight into an AI 
system’s inner workings can also help 
computer scientists to improve and 
refine the models they create — and 
might even lead to fresh ideas about 
how to approach certain problems. 
However, the benefits of XAI can only 
be achieved if the explanations it gives 
are themselves understandable and 

Breaking into 
the black box 
of artificial 
intelligence
Scientists are finding ways to explain the 
inner workings of complex machine-learning 
models. By Neil Savage
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the creation of an impossible scene 
could re-engineer the model by hand 
to accomplish that.

Another value of explainability is 
that the way a machine performs a task 
might provide the people watching 
it with some insight into how they 
could do things differently or better 
themselves. Computational biologist 
Laura-Jayne Gardiner trained an AI to 
predict which genes were at work in 
regulating circadian clocks, internal 
molecular timers that govern a range 
of biological processes7. Gardiner and 
her colleagues at IBM Research Europe 
and the Earlham Institute, a life-
sciences research group in Norwich, 
UK, also made the computer highlight 
the features that it used to decide 
whether a gene was likely to play a part 
in circadian rhythm. Its approach was 
surprising. “We were only focused on 
the promoters for gene regulation,” 
Gardiner says, but the AI found 
clues in sequences in genes that the 
researchers would have ignored. “You 
end up with this ranked list of the 
features,” Gardiner explains; the team 
can use this in its lab-based research to 
further refine its understanding of  
the biology.  

Accuracy and trust
Coming up with explanations is a 
start, but there should also be a way to 
quantify their accuracy, says Pradeep 
Ravikumar, a computer scientist at 
Carnegie Mellon University who is 
working on ways to automate such 
evaluation8. Explanations that seem 
to make sense to a human could in fact 
prove to have little relation to what the 
model is actually doing.

“The question of how to 
objectively evaluate explanations is 
still in its early stages,” Ravikumar says. 
“We need to get better explanations 
and also better ways to evaluate 
explanations.” One way to test the 
veracity of an explanation is to make 
small changes to the features that it 
says are important. If they truly are, 
these minor changes in the input 
should lead to big changes in the 
output. Similarly, large alterations to 
irrelevant features — say, removing a 
bus from a picture of a cat — should 
not affect the results. If the evaluation 
system goes one step further and 
predicts not just which features are 
important, but also how the model’s 

answer would change if small changes 
were made to those features, this can 
also be tested. “If an explanation was 
actually explaining the model, then it 
would have a better sense of how the 
model would behave with these small 
changes,” Ravikumar says.

The search for explanations can 
sometimes seem like so much work 
that many computer scientists might 
be tempted to skip it, and take the AI’s 
results at face value. But at least some 
level of explainability is relatively 
simple — saliency maps, for instance, 
can now be generated quickly and 
inexpensively, Janizek says. By 
contrast, training and using a GAN is 
more complex and time-consuming. 
“You definitely have to have pretty 
good familiarity with deep-learning 
stuff, and a nice machine with some 
graphics processing units to get it to 
work,” Janizek says. A third method his 
group tried — altering a few hundred 
images manually with photo-editing 
software to identify whether a feature 
was important — was even more 
labour intensive. 

Saenko says many researchers in 
the machine-learning community have 
also tended to see a trade-off between 
explainability and accuracy. They think 
that the level of detail and the number 
of calculations that make neural 
networks more accurate than smaller 
decision trees also put them out of 
reach of all human comprehension. 
But some are questioning whether that 
trade-off is real, Janizek says. “It could 
end up being the case that a more 
interpretable model is a more useful 
model and a more accurate model.”

It’s also beginning to look as 
if some of the patterns that neural 
networks can pick out that are 
imperceptible to people might not be 
as important as computer scientists 
once thought, he adds. “How often are 
they something that’s truly predictive 
in a way that’s going to generalize 
across environments? And how often 
are they some weird kind of source-
specific noise?” 

However big or small the 
challenge of explainability might 
be, a good explanation is not always 
going to be enough to convince 
users to rely on a system, Ravikumar 
says. Knowing why an AI assistant, 
such as Amazon’s Alexa, answered a 
question in a certain way might not 

foster trust among users as much as, 
say, laws that prohibit the misuse of 
recordings of private conversations. 
Perhaps physicians will need clinical 
evidence that a computer’s diagnoses 
have proved right over time, and a 
verified biological reason why the 
factors the computer is looking at 
should be relevant. And policymakers 
might require that some protections 
regarding the use of such systems be 
written into law. “These are broader 
questions that I think the community 
hasn’t really thought too deeply 
about,” Ravikumar says.

However, in the area of 
explanations, AI researchers have been 
making strides. Although there might 
still be specifics to be worked out to 
cover the variety of machine-learning 
models in use, the problem will be 
cracked, probably in a year or two, 
says Torralba. People, he says, “always 
talk about this black box, and we don’t 
think that neural networks are black 
boxes. If they are working really well, 
then if you look inside, what they do 
makes sense.”  ■
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says. A deep neural network, however, 
is typically too complex for us to wrap 
our heads around easily. “A neural 
network is doing a computation that 
involves millions, or more likely now 
billions, of numbers,” Saenko says. 

Mapping activity
In general, attempts to explain the 
mysterious workings of a deep neural 
network involve finding out what 
characteristics of the input data are 
affecting the results, and using that to 
infer what’s happening inside the black 
box. One tool that helped DeGrave 
and Janizek to work out that the 
orientation markers on chest X-rays 
were affecting diagnoses was saliency 
maps — colour-coded charts that show 
which part of an image the computer 
paid the most attention to when 
making its call.

Saenko and her colleagues 
developed a technique called D-RISE 
(detector randomized input sampling 
for explanation) to produce such 
maps4. The researchers take a photo — 
for instance, of a vase full of flowers — 
and systematically block out different 
parts of the image before showing 
it to an AI tasked with identifying a 
particular object, such as the vase. 
They then record how obscuring each 
cluster of pixels affects the accuracy 
of the results, as well as telling the 
system to colour code the whole photo 
according to how important each part 
was to the recognition process. 

Unsurprisingly, in a picture of 
a flower-filled vase, the vase itself is 
lit up in bright reds and yellows — its 
presence is important. But it is not 
the only area of the picture that is 
highlighted. “The saliency extends all 
the way up to the bouquet of flowers,” 
Saenko says. “They’re not labelled as 
part of the vase, but the model learns 
that if you see flowers, it’s much more 
likely that this object is a vase.”

D-RISE highlights the factors that, 
if removed, would cause the AI model 
to change its results. “It’s useful for 
understanding what mistakes they 
might be making, or if they’re doing 
something for the wrong reason,” says 
Saenko, whose work in this area was 
partly funded by a now-completed 
XAI programme run by the US Defense 
Advanced Research Projects Agency.

Altering input data to identify 
important features is a basic approach 

to many types of AI model. But the 
task becomes more challenging in 
more complex neural networks, says 
Anupam Datta, a computer scientist 
at Carnegie Mellon University in 
Pittsburgh, Pennsylvania. In those 
complex cases, scientists want to 
tease out not just which features 
play a part in the decision-making 
and how big that role is, but also how 
the importance of a feature alters in 
relation to changes in other features. 
“The causality element still carries 
over because we are trying to still 
figure out which features have the 
highest causal effect on the model’s 
prediction,” Datta says. “But the 
mechanism for measuring it changes 
a little bit.” As with Saenko’s saliency 

maps, he systematically blocks 
out individual pixels in images. A 
mathematical value can then be 
assigned to that portion of the image, 
representing the magnitude of the 
change that results from obscuring 
that part. Seeing which pixels are most 
important tells Datta which neurons 
in the hidden layers have the greatest 
role in the outcome, helping him to 
map the model’s internal structure and 
draw conclusions about the concepts 
it has learnt5. 

Advances from explanation
Another way DeGrave and Janizek 
measured saliency relied on a complex 
type of neural network known as a 
generative adversarial network (GAN). 
A typical GAN consists of a pair of 
networks. One generates data — an 
image of a street, for instance — and 
the other tries to determine whether 

the output is real or fake.
The two networks continue to 

interact in this way until the first 
network is reliably creating images 
that can fool the other. In their case, 
the Washington researchers asked a 
GAN to turn COVID-positive X-rays into 
COVID-negative images3. By seeing 
which aspects of the X-rays it altered, 
the researchers could see what part of 
the image the computer considered 
important to its diagnosis.

Although the basic principle of 
a GAN is straightforward, the subtle 
dynamics of the pair of networks is not 
well understood. “The way that a GAN 
generates images is quite mysterious,” 
says Antonio Torralba, a computer 
scientist at the Massachusetts 
Institute of Technology in Cambridge, 
who is trying to solve this enigma. 
Given a random input of numbers, it 
eventually outputs a picture that looks 
real. This approach has been used to 
create photos of faces that don’t exist 
and produce news stories that read as 
if they were written by a person.

Torralba and his team decided 
to dissect a GAN and look at what the 
individual neurons were doing. Just 
like Datta, they found some neurons 
focused on specific concepts6. “We 
found groups of units that were 
responsible for drawing trees, other 
groups responsible for drawing 
buildings, and some units drawing 
doors and windows,” he says. And 
just as Saenko’s models had learnt 
that flowers suggest a vase, units in 
his GAN also learnt from context. 
One developed a detector for beds 
to decide whether a scene was a 
bedroom, and another learnt that 
doors don’t usually exist in trees. 

Being able to recognize which 
neurons are identifying or producing 
which objects opens up the possibility 
of being able to refine a neural network 
without having to show it thousands 
of new photographs, Torralba says. If 
a model has been trained to recognize 
cars, but all the images it trained on 
were of cars on a paved surface, it 
might fail when shown a picture of a 
car on snow. But a computer scientist 
who understands the model’s internal 
connections might be able to tweak 
the model to recognize a layer of 
snow as equivalent to a paved surface. 
Similarly, a computer special-effects 
designer who might want to automate 

 “We were only 
focused on the 
promoters for gene 
regulation, but the 
AI found clues in 
sequences in genes 
that the researchers 
would have ignored.”
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C
ancer drugs usually take 
a scattergun approach. 
Chemotherapies inevitably 
hit healthy bystander cells 

while blasting tumours, sparking a 
slew of side effects. It is also a big ask 
for an anticancer drug to find and 
destroy an entire tumour — some are 
difficult to reach, or hard to penetrate 
once located.

A long-dreamed-of alternative is 
to inject a battalion of tiny robots into 
a person with cancer. These miniature 
machines could navigate directly 
to a tumour and smartly deploy a 
therapeutic payload right where it is 
needed. “It is very difficult for drugs to 
penetrate through biological barriers, 
such as the blood–brain barrier or 
mucus of the gut, but a microrobot 

can do that,” says Wei Gao, a medical 
engineer at the California Institute of 
Technology in Pasadena.

Among his inspirations is the 
1966 film Fantastic Voyage, in which 
a miniaturized submarine goes on a 
mission to remove a blood clot in a 
scientist’s brain, piloted through the 
bloodstream by a similarly shrunken 
crew. Although most of the film 

remains firmly in the realm of science 
fiction, progress on miniature medical 
machines in the past ten years has seen 
experiments move into animals for the 
first time.

There are now numerous 
micrometre- and nanometre-scale 
robots that can propel themselves 
through biological media, such as the 
matrix between cells and the contents 
of the gastrointestinal tract. Some are 
moved and steered by outside forces, 
such as magnetic fields and ultrasound. 
Others are driven by onboard chemical 
engines, and some are even built on 
top of bacteria and human cells to take 
advantage of those cells’ inbuilt ability 
to get around. Whatever the source of 
propulsion, it is hoped that these tiny 
robots will be able to deliver therapies 
to places that a drug alone might not 
be able to reach, such as into the centre 
of solid tumours. However, even as 
those working on medical nano- and 
microrobots begin to collaborate more 
closely with clinicians, it is clear that 
the technology still has a long way to 
go on its fantastic journey towards  
the clinic.

Poetry in motion
One of the key challenges for a robot 
operating inside the human body is 
getting around. In Fantastic Voyage, 
the crew uses blood vessels to move 
through the body. However, it is here 
that reality must immediately diverge 
from fiction. “I love the movie,” says 
roboticist Bradley Nelson, gesturing 
to a copy of it in his office at the Swiss 
Federal Institute of Technology (ETH) 
Zurich in Switzerland. “But the physics 
are terrible.” Tiny robots would have 
severe difficulty swimming against the 
flow of blood, he says. Instead, they will 
initially be administered locally, then 
move towards their targets over short 
distances.

When it comes to design, size 
matters. “Propulsion through 
biological media becomes a lot easier 
as you get smaller, as below a micron 
bots slip between the network of 
macromolecules,” says Peer Fischer, 
a robotics researcher at the Max 
Planck Institute for Intelligent Systems 
in Stuttgart, Germany. Bots are 
therefore typically no more than 1–2 
micrometres across. However, most do 
not fall below 300 nanometres. Beyond 
that size, it becomes more challenging 

to detect and track them in biological 
media, as well as more difficult to 
generate sufficient force to move them.  

Scientists have several choices 
for how to get their bots moving. 
Some opt to provide power externally. 
For instance, in 2009, Fischer — who 
was working at Harvard University 
in Cambridge, Massachusetts, at the 
time, alongside fellow nanoroboticist 
Ambarish Ghosh — devised a glass 
propeller, just 1–2 micrometres in 
length, that could be rotated by a 
magnetic field1. This allowed the 
structure to move through water, and 
by adjusting the magnetic field, it could 
be steered with micrometre precision. 
In a 2018 study2, Fischer launched a 
swarm of micropropellers into a pig’s 
eye in vitro, and had them travel over 

centimetre distances through the 
gel-like vitreous humour into the retina 
— a rare demonstration of propulsion 
through real tissue. The swarm was 
able to slip through the network of 
biopolymers within the vitreous 
humour thanks in part to a silicone oil 
and fluorocarbon coating applied to 
each propeller. Inspired by the slippery 
surface that the carnivorous pitcher 
plant Nepenthes uses to catch insects, 
this minimized interactions between 
the micropropellers and biopolymers. 

Another way to provide 
propulsion from outside the body is 
to use ultrasound. One group placed 
magnetic cores inside the membranes 
of red blood cells3, which also carried 
photoreactive compounds and 
oxygen. The cells’ distinctive biconcave 
shape and greater density than other 
blood components allowed them to be 
propelled using ultrasonic energy, with 
an external magnetic field acting on 
the metallic core to provide steering. 

Once the bots are in position, light can 
excite the photosensitive compound, 
which transfers energy to the oxygen 
and generates reactive oxygen species 
to damage cancer cells.

This hijacking of cells is proving 
to have therapeutic merits in other 
research projects. Some of the most 
promising strategies aimed at treating 
solid tumours involve human cells 
and other single-celled organisms 
jazzed up with synthetic parts. In 
Germany, a group led by Oliver 
Schmidt, a nanoscientist at Chemnitz 
University of Technology, has designed 
a biohybrid robot based on sperm 
cells4. These are some of the fastest 
motile cells, capable of hitting speeds 
of 5 millimetres per minute, Schmidt 
says. The hope is that these powerful 
swimmers can be harnessed to deliver 
drugs to tumours in the female 
reproductive tract, guided by magnetic 
fields. Already, it has been shown that 
they can be magnetically guided to a 
model tumour in a dish. 

“We could load anticancer drugs 
efficiently into the head of the sperm, 
into the DNA,” says Schmidt. “Then 
the sperm can fuse with other cells 
when it pushes against them.” At the 
Chinese University of Hong Kong, 
meanwhile, nanoroboticist Li Zhang 
led the creation of microswimmers 
from Spirulina microalgae cloaked in 
the mineral magnetite. The team then 
tracked a swarm of them inside rodent 
stomachs using magnetic resonance 
imaging5. The biohybrids were shown 
to selectively target cancer cells. They 
also gradually degrade, reducing 
unwanted toxicity.

Another way to get micro- and 
nanobots moving is to fit them with 
a chemical engine: a catalyst drives a 
chemical reaction, creating a gradient 
on one side of the machine to generate 
propulsion. Samuel Sánchez, a chemist 
at the Institute for Bioengineering 
of Catalonia in Barcelona, Spain, is 
developing nanomotors driven by 
chemical reactions for use in treating 
bladder cancer. Some early devices 
relied on hydrogen peroxide as a fuel. 
Its breakdown, promoted by platinum, 
generated water and oxygen gas 
bubbles for propulsion. But hydrogen 
peroxide is toxic to cells even in 
minuscule amounts, so Sánchez has 
transitioned towards safer materials. 
His latest nanomotors are made up of 

Miniature medical robots 
step out from sci-fi
Tiny machines that deliver therapeutic payloads to precise locations in the 
body are the stuff of science fiction. But some researchers are trying to turn 
them into a clinical reality. By Anthony King

“We could load 
anticancer drugs 
efficiently into the 
head of the sperm, 
into the DNA. Then 
the sperm can fuse 
with other cells.”
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honeycombed silica nanoparticles, tiny 
gold particles and the enzyme urease6. 
These 300–400-nm bots are driven 
forwards by the chemical breakdown 
of urea in the bladder into carbon 
dioxide and ammonia, and have been 
tested in the bladders of mice. “We can 
now move them and see them inside a 
living system,” says Sánchez. 

Breaking through
A standard treatment for bladder 
cancer is surgery, followed by 
immunotherapy in the form of an 
infusion of a weakened strain of 
Mycobacterium bovis bacteria into 
the bladder, to prevent recurrence. 
The bacterium activates the person’s 
immune system, and is also the basis 
of the BCG vaccine for tuberculosis. 
“The clinicians tell us that this is 
one of the few things that has not 
changed over the past 60 years,” says 
Sánchez. There is a need to improve 
on BCG in oncology, according to 
his collaborator, urologic oncologist 
Antoni Vilaseca at the Hospital Clinic of 
Barcelona. Current treatments reduce 
recurrences and progression, “but we 
have not improved survival”, Vilaseca 
says. “Our patients are still dying.”

The nanobot approach that 
Sánchez is trying promises precision 
delivery. He plans to insert his bots 
into the bladder (or intravenously), to 
motor towards the cancer with their 
cargo of therapeutic agents to target 
cancer cells, using abundant urea as 
a fuel. He might use a magnetic field 
for guidance, if needed, but a more 
straightforward replacement of BCG 
with bots that do not require external 
control, perhaps using an antibody to 
bind a tumour marker, would please 
clinicians most. “If we can deliver our 

treatment to the tumour cells only, 
then we can reduce side effects and 
increase activity,” says Vilaseca. 

Not all cancers can be reached by 
swimming through liquid, however. 
Natural physiological barriers can 
block efficient drug delivery. The gut 
wall, for example, allows absorption 
of nutrients into the bloodstream, and 
offers an avenue for getting therapies 
into bodies. “The gastrointestinal tract 
is the gateway to our body,” says Joseph 
Wang, a nanoengineer at the University 
of California, San Diego. However, a 
combination of cells, microbes and 
mucus stops many particles from 
accessing the rest of the body. To 
deliver some therapies, simply being in 
the intestine isn’t enough — they also 
need to be able to burrow through its 
defences to reach the bloodstream, and 
a nanomachine could help with this.

In 2015, Wang and his colleagues, 
including Gao, reported the first self-
propelled robot in vivo, inside a mouse 
stomach7. Their zinc-based nanomotor 
dissolved in the harsh stomach acids, 
producing hydrogen bubbles that 
rocketed the robot forwards. In the 
lower gastrointestinal tract, they 
instead use magnesium. “Magnesium 
reacts with water to give a hydrogen 
bubble,” says Wang. In either case, the 
metal micromotors are encapsulated 
in a coating that dissolves at the right 
location, freeing the micromotor to 
propel the bot into the mucous wall.

Some bacteria have already worked 
out their own ways to sneak through 
the gut wall. Helicobacter pylori, which 
causes inflammation in the stomach, 
excretes urease enzymes to generate 
ammonia and liquefy the thick 
mucous that lines the stomach wall. 
Fischer envisages future micro- and 
nanorobots borrowing this approach to 
deliver drugs through the gut. 

Solid tumours are another difficult 
place to deliver a drug. As these 
malignancies develop, a ravenous 
hunger for oxygen promotes an 
outside surface covered with blood 
vessels, while an oxygen-deprived core 
builds up within. Low oxygen levels 
force cells deep inside to switch to 
anaerobic metabolism and churn out 
lactic acid, creating acidic conditions. 
As the oxygen gradient builds, the 
tumour becomes increasingly difficult 
to penetrate. Nanoparticle drugs lack 
a force with which to muscle through 

a tumour’s fortifications, and typically 
less than 2% of them will make it 
inside8. Proponents of nanomachines 
think that they can do better.

Sylvain Martel, a nanoroboticist 
at Montreal Polytechnic in Canada, is 
trying to break into solid tumours using 
bacteria that naturally contain a chain 
of magnetic iron-oxide nanocrystals. 
In nature, these Magnetococcus 
species seek regions that have low 
oxygen. Martel has engineered such 
a bacterium to target active cancer 
cells deep inside tumours8. “We guide 
them with a magnetic field towards 
the tumour,” explains Martel, taking 
advantage of the magnetic crystals that 
the bacteria typically use like a compass 
for orientation. The precise locations 
of low-oxygen regions are uncertain 
even with imaging, but once these 
bacteria reach the right location, their 
autonomous capability kicks in and they 
motor towards low-oxygen regions. In 
a mouse, more than half the bacteria 
injected close to tumour grafts broke 
into this tumour region, each laden 
with dozens of drug-loaded liposomes. 
Martel cautions, however, that there 
is still some way to go before the 
technology is proven safe and effective 
for treating people with cancer.

In the Netherlands, chemist 
Daniela Wilson at Radboud University 
in Nijmegen and colleagues have 
developed enzyme-driven nanomotors 
powered by DNA that might similarly 
be able to autonomously home in on 
tumour cells9. The motors navigate 
towards areas that are richer in DNA, 
such as tumour cells that undergoing 
apoptosis. “We want to create systems 
that are able to sense gradients by 
different endogenous fuels in the 
body,” Wilson says, suggesting that 
the higher levels of lactic acid or 
glucose typically found in tumours 
could also be used for targeting. Once 
in place, the autonomous bots seem 
to be picked up by cells more easily 
than passive particles are — perhaps 
because the bots push against cells. 

Fiction versus reality
Inspirational though Fantastic Voyage 
might have been for many working 
in the field of medical nanorobotics, 
there are some who think the film has 
become a burden. “People think of this 
as science fiction, which excites people, 
but on the other hand they don’t take 

it so seriously,” says Martel. Fischer is 
similarly jaded by movie-inspired hype. 
“People sometimes write very liberally 
as if nanobots for cancer treatment are 
almost here,” he says. “But this is not 
even in clinical trials right now.”

Nonetheless, advances in the past 
ten years have raised expectations 
of what is possible with current 
technology. “There’s nothing more fun 
than building a machine and watching 
it move. It’s a blast,” says Nelson. But 
having something wiggling under a 
microscope no longer has the same 
draw, without medical context. “You 
start thinking, ‘how could this benefit 
society?’” he says. 

With this in mind, many 
researchers creating nanorobots for 
medical purposes are working more 
closely with clinicians than ever before. 
“You find a lot of young doctors who 
are really interested in what the new 
technologies can do,” Nelson says. 
Neurologist Philipp Gruber, who works 
with stroke patients at Aarau Cantonal 
Hospital in Switzerland, began a 

collaboration with Nelson two years 
ago after contacting ETH Zurich. The 
pair share an ambition to use steerable 
microbots to dissolve clots in people’s 
brains after ischaemic stroke — either 
mechanically, or by delivering a 
drug. “Brad knows everything about 
engineering,” says Gruber, “but we can 
advise about the problems we face in 
the clinic and the limitations of current 
treatment options.”

Sánchez tells a similar story: while 
he began talking to physicians around a 
decade ago, their interest has warmed 
considerably since his experiments in 
animals began three to four years ago. 
“We are still in the lab, but at least we are 
working with human cells and human 
organoids, which is a step forward,” 
says his collaborator Vilaseca.

As these seedlings of clinical 
collaborations take root, it is likely 
that oncology applications will be the 
earliest movers — particularly those 
that resemble current treatments, 
such as infusing microbots instead 
of BCG into cancerous bladders. 

But even these therapeutic uses are 
probably at least 7–10 years away. 
In the nearer term, there might be 
simpler tasks that nanobots can be 
used to accomplish, according to 
those who follow the field closely.

For example, Martin Pumera, a 
nanoroboticist at the University of 
Chemistry and Technology in Prague, 
is interested in improving dental care 
by landing nanobots beneath titanium 
tooth implants10. The tiny gap between 
the metal implants and gum tissue is 
an ideal niche for bacterial biofilms 
to form, triggering infection and 
inflammation. When this happens, 
the implant must often be removed, 
the area cleaned, and a new implant 
installed — an expensive and painful 
procedure. He is collaborating with 
dental surgeon Karel Klíma at Charles 
University in Prague. 

Another problem the two are 
tackling is oral bacteria gaining access 
to tissue during surgery of the jaws 
and face. “A biofilm can establish very 
quickly, and that can mean removing 
titanium plates and screws after 
surgery, even before a fracture heals,” 
says Klíma. A titanium oxide robot 
could be administered to implants 
using a syringe, then activated 
chemically or with light to generate 
active oxygen species to kill the 
bacteria. Examples a few micrometres 
in length have so far been constructed, 
but much smaller bots — only a few 
hundred nanometres in length — are 
the ultimate aim.

Clearly, this is a long way from 
parachuting bots into hard-to-reach 
tumours deep inside a person. But 
the rising tide of in vivo experiments 
and the increasing involvement of 
clinicians suggests that microrobots 
might just be leaving port on their long 
journey towards the clinic.  ■
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“We could load anticancer drugs efficiently 
into the head of the sperm, into the DNA. Then 
the sperm can fuse with other cells.”

▲ An electron microscope image of a glass nanopropeller.
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I
n the waning days of 2020, Timnit 
Gebru, an artificial intelligence 
(AI) ethicist at Google, submitted 
a draft of an academic paper to her 

employer. Gebru and her collaborators 
had analysed natural language 
processing (NLP), and specifically the 
data-intensive approach of training 

NLP artificial intelligences (AIs). 
Such AIs can accurately interpret 
documents produced by humans, 
and respond naturally to human 
commands or queries.

In their study, the team found the 
process of training a NLP AI requires 
immense resources and creates a 

considerable risk of embedding 
significant bias into the AI. That bias 
can lead to inappropriate or even 
harmful responses. Google was 
skeptical of the paper’s conclusions, 
and was displeased that Gebru 
had submitted it to a prominent 
conference. The company asked 

Gebru either to retract the paper 
or remove any mention of Google 
affiliations. Gebru refused the terms. 
Within a day, she learned that she no 
longer had a job.

Gebru’s sudden ouster raised 
serious questions about the 
transparency, accountability and 
safety of AI development, particularly 
in private companies. It also crystalized 
concerns about AI algorithms that had 
been bubbling along for years.

Whether embedded in a natural-
language processor or a medical 
diagnostic, AI algorithms can carry 
unintentional biases, and those biases 
can have real-world consequences. 
The manipulation of the Facebook 
algorithm to impact the 2016 United 
States presidential election is one 
frequently cited example. As another, 
Aimee van Wynsberghe, an AI ethicist 
at the University of Bonn in Germany, 
cites an abortive effort by Amazon to 
use an AI-based recruiting tool. The 
tool, which was tested between 2014 
and 2017, drew the wrong lessons from 
the company’s past hiring patterns.

“When they put it in practice, 
they found that the algorithm would 
not select women for the higher-level 
positions, only for lower-level ones,” 
says van Wynsberghe.

Yet the development of AI 
continues to accelerate. The market 
for AI software is expected to reach 
US$63 billion in 2022, according 
to Gartner Research, and that is on 
top of 20% growth in 2021. Already 
commonplace in online tools such 
as recommendation or optimization 
engines and translation services, 
higher impact AI applications are 
on the horizon, particularly in large 
sectors like energy, include those 
in transportation, healthcare, 
manufacturing, drug development 
and sustainability.

Given the size and number 
of opportunities, the enthusiasm 
for AI solutions can obscure risks 
associated with them. As Gebru 
found, AIs have the potential to cause 
real harm. If humans can’t trust the 
very machines meant to help them, 
the true promise of the technology 
may never be fulfilled.

Smarter by the day
Although many AIs are programmed 
directly by humans, most modern 

implementations are built on artificial 
neural networks. The algorithms 
analyse data to identify and extract 
patterns, essentially ‘learning’ 
about the world as they go. The 
interpretations of these data guide 
the next step of analysis, or inform 
decisions made by the algorithm.

Artificial neural networks analyse 
data collaboratively in a manner 
roughly analogous to the neurons 
in the human brain, explains Jürgen 
Schmidhuber, director of KAUST 
in Saudi Arabia. He developed 
a foundational neural network 
framework known as ‘long short-term 
memory’ (LSTM) in the late 1990s.

“In the beginning, the learning 
machine knows nothing – all the 
connections are random,” he says. 
“But then over time, it makes some of 
the connections stronger and some of 
them weaker, until the whole thing can 
do interesting things.” 

Such training is a characteristic of 
LSTM and other approaches to neural 
networks, and it’s a reason those AIs 
have become so popular. An AI that 
learns to learn has the potential to 
develop novel solutions to extremely 
difficult problems. The FII Institute 

THINK initiative, for example, is 
pursuing a multi-pronged roadmap 
for AI development to explore 
healthcare applications such as drug 
discovery and epidemic control, as 
well as sustainability-oriented efforts 
to monitor and protect forest and 
marine ecosystems – all of which lend 
themselves to AI applications.

But training can build bad habits 
as easily as good ones. As Gebru found 
with NLP AIs, very large and improperly 
curated data sets can amplify rather 
than rectify human biases in an AI’s 
decision-making process. Sandra 
Wachter, a researcher specializing in 

data ethics at the University of Oxford 
in the United Kingdom, highlights 
the example of diagnostic software 
tools designed to detect signs of 
skin cancer through image analysis, 
which fare poorly on black- or brown-
skinned individuals because they 
were primarily trained on data from 
Caucasian patients. “It might be 
misdiagnosing you in a way that could 
actually have harmful consequences 
for your health and might even be 
lethal,” she says.

Similar training data problems have 
plagued IBM’s AI-driven Watson Health 
platform, and the company recently 
moved to divest itself of this technology 
after years of struggling with poor 
diagnostic performance and ill-advised 
treatment recommendations.

Such cases beg the question: Who 
is to blame when an algorithm does 
not work as designed? Answers may be 
easy to reach when an AI’s conclusions 
are objectively wrong, as in certain 
medical diagnostics. But other 
situations are much more ambiguous.

For years, Facebook enabled 
companies to target their advertising 
based on algorithmically derived 
information that allowed the platform 
to infer a user’s race, an option 
now discontinued. “Black people 
wouldn’t be able to see certain job 
advertisements, or advertisements 
for housing or financial services, for 
example,” says Wachter. “But those 
people didn’t know about it.”

The victims of discrimination 
might have a claim in the courts 
after the fact. But the best solution 
is to pre-empt the introduction of 
destructive bias in the first place with 
ethical AI design. 

Rules for robots
The idea of imbuing machines with 
ethics is not new. Author Isaac Asimov 
penned his Three Laws of Robotics 
when thinking of androids more than 
75 years ago, and all three of his laws 
raise ethical considerations. In the 
research labs around the world, science 
fiction is now edging towards reality 
as researchers grapple with how to 
embed ethics into AI.

Current work entails identifying 
sets of internal guidelines that would be 
compatible with human laws, norms, 
and moral expectations, and could 
serve to keep AIs from making harmful 

The challenge of making 
moral machines
Artificial intelligence has the potential to improve industries, markets and 
lives – but only if we can trust the algorithms.
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▲ As applications for AIs proliferate, so are questions about ethical development and embedded bias.

“We can’t just 
build robots that 
are ‘ethical’ – you 
have to ask ethical 
for whom, where 
and when.”
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or otherwise inappropriate decisions. 
Van Wynsberghe pushes back against 
the idea of calling such AI systems 
‘ethical machines’ per se. “It’s like a 
sophisticated toaster,” she says. “This 
is about embedding ethics into the 
procedure of making the machines.”

In 2018, the Institute of Electrical 
and Electronics Engineers (IEEE), a 
non-profit organization headquartered 
in New York City, US, convened an 
interdisciplinary group of hundreds 
of experts from around the world to 
hash out some of the core principles 
underlying ‘ethically aligned design’ for 
AI systems. Bertram Malle, a cognitive 
scientist specializing in human-robot 
interaction at Brown University in 
Providence, Rhode Island, US, who 
co-chaired one of the effort’s working 
groups, says, “We can’t just build robots 
that are ‘ethical’ – you have to ask 
ethical for whom, where and when.” 
Accordingly, the ethical framework 
for any given AI, Malle says, should be 
developed with close input from the 
communities of people with which they 
will ultimately be interacting.

A recent law review article from 
Wachter’s team highlighted some 
of this complexity. After assessing a 
variety of metrics designed to assess 
the level of bias in an AI system, her 
team determined that 13 out of 20 
failed to meet the legal guidelines 
of the European Union’s non-
discrimination law.

“One of the explanations is because 
the majority, if not all, of those bias 
tests were developed in the US… 
under North American assumptions,” 
she says. This work was conducted in 
collaboration with Amazon, and the 
company has subsequently adopted an 
improved bias-testing system based on 
the open-source toolkit that resulted 
from the study.

A trustworthy AI system also 
requires a measure of transparency, 
where users can get a clear sense of 
how an algorithm arrived at a particular 
decision or outcome. This can be tricky, 
given the ‘black box’ complexity and 
proprietary nature of many AI systems, 
but is not an insurmountable problem. 
“Building systems that are completely 
transparent is both unrealistic and 
unnecessary,” says Malle. “We need to 
have systems that can answer the kinds 
of questions that humans have.”

That has been another priority for 

Wachter’s team, which uses a strategy 
called ‘counterfactual explanation’ to 
probe AI systems with different inputs 
in order to determine which factors 
lead to which outcomes. She cites the 
example of interrogating diagnostic 
software with different metabolic 
parameters to understand how the 
algorithm determines that a patient 
has diabetes.

Ethics for all
If embedding ethics and transparency 
into AI is a difficult problem, the 
ethical and transparent development 
of AI, by humans, could be even more 
challenging. Private companies like 
Google, Facebook, Baidu and Tesla 
account for a large portion of overall AI 
development, while new start-ups seem 

to emerge on a weekly basis. Ethical 
oversight in such settings can vary 
considerably.

“We see glimmers of hope, where 
[companies] have hired their own 
ethicists,” van Wysnberghe says. “The 
problem is that they’re not transparent 
about what the ethicists are doing, what 
they’re learning – it’s all behind non-
disclosure agreements.” The firing of 
Gebru and other ethicists highlights the 
precariousness of allowing companies 
to police themselves. 

But there are potential solutions. 
To overcome the opacity of private 
AI development, for example, van 
Wynsberghe advocates the notion 
that companies could collectively 
sponsor an independent ethical 

review organization to act analogously 
to the institutional review boards 
that supervise clinical trials. In this 
approach, corporations would 
collectively fund a board of ethicists 
to take on rotating ‘shifts’ at the 
companies to oversee work. “So you’d 
have this kind of flow of information 
and shared experiences and whatnot, 
and the ethicists are not dependent 
on the company for their paycheck,” 
she says. “Otherwise, they’re scared to 
speak up.”

New legal frameworks could help 
as well, and Wachter believes that many 
companies are likely to welcome some 
guidance rather than operating in an 
environment of uncertainty and risk. 
“Now examples are being put on the 
table that concretely tell them what it 
means to be accountable, what it means 
to be bias-free, and what it means to 
protect privacy,” she says.

The European Union currently 
leads the way, with an ‘AI Act’ that 
provides a detailed framework for 
the risk-based assessment of where AI 
systems can be deployed safely and 
ethically. China is also implementing 
strict regulations designed to 
prevent AI-based exploitation of or 
discrimination against users – although 
these same regulations could also 
provide a vehicle for further censorship 
of online speech.

Above all, automation should not 
be seen as a universal solution and the 
collective good, for all humans not 
just AI developers, should always be a 
consideration. Malle favours a focus on 
systems that complement rather than 
replace human expertise in areas such 
as education, healthcare and social 
services. For example, AI could help 
overextended teachers to get a better 
handle on students who need more 
individual attention or are struggling 
in particular areas of the curriculum. 
Or AI could take care of routine tasks 
in the hospital ward, so that nurses can 
better focus on the specific needs of 
their patients.

The goal should be to amplify what 
can be achieved with available human 
intellect, expertise and judgement – 
not to take those out of the equation 
altogether. “I really see opportunities in 
the domains where we really don’t have 
enough humans or not enough trained 
humans,” Malle says. “Let’s think about 
domains of need first.”  ■
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